![]() |
![]() |
|
![]() |
More SUPA research:
|
![]() |
![]() |
![]() |
![]() |
Physics research at UWS
The Institute of Physical Research at Paisley (now the University of the West of Scotland, UWS).
Nuclear physics at its frontiers
Neutron
rich and neutron deficient nuclei that are formed in stellar systems exhibit
numerous extraordinary nuclear phenomena: neutron haloes,
neutron skins, new sets of magic numbers, proton radioactivity, etc. New techniques for
the production of exotic nuclei in the laboratory have opened up the opportunity
to undertake microscopic studies of the properties of neutron-rich nuclei,
in particular, which have historically been very difficult to study.
![]() |
Nuclear Physics Research at the UWS is focused on three main areas:
The group was among the first to utilise Deep Inelastic Reactions to study
exotic neutron-rich nuclei in regions inaccessible to traditional reactions,
and it is among the first to study nucleon transfer reactions in inverse
kinematics with radioactive beams. |
|
Microscale Sensors
Research
into improved sensors is recognised as crucial in many systems. Microscale
Sensors applies techniques and knowledge from
electronics and materials science as well as physics to explore the development
of new devices. Most of the work of the group is presently focused on ultrasonic
devices, including actuators, to generate the ultrasound to be sensed, and
we also
work in optics and magnetics. Our activities include fundamental mathematical
analyses as well as extensive computer modelling and optimisation and experimental
validation.
Microscale Sensors website.
Research in the Thin Film Centre at the University of the West of Scotland:
Barrier layers for Flexible Displays
The next generation of displays based on Organic
Light-Emitting Diode (OLED) materials will be on flexible substrates. Oxygen
and water vapour pass rather freely through most suitable flexible materials.
This work, in collaboration with Dupont-Teijin Films, aims to produce coated
polyester with barrier properties approaching those of glass.
Flexible Active Matrix Backplane Substrates
This project, in collaboration with Dupont-Teijin
Films and Plastic Logic, aims to develop polymer-based electronics on polymeric
substrates for the next generation of flexible "paper-like" displays.
In-situ Broadband Optical Monitor
An in-situ broadband optical monitoring system
will enable the real-time characterisation of sputtered thin films. This
will be developed for precise control of layer thickness in multilayer
deposition thus enabling the manufacture of complex optical filters
Bio/Haemo Compatible and Hard Coatings
This group is investigating a range of bio and
haemo-compatible coatings and is also looking at the properties of ultra-hard
coatings
Novel advanced optical glasses
Laser
glasses for tuneable 1 to 3 µm infrared radiation have been developed. These
allow access to more optical fibre internet channels, and study of biological
and atmosphere phenomena. Advanced quantitative control of colour in glasses
will enhance production yields. Special ultrahard glasses provide robust
durable window materials.