Tunable Graphene-Dielectric Epsilon-Near-Zero Metamaterial (ENZ MM)

U. B. Akpan

Additional Author(s): A. Di Falco

Additional Institution(s): University of St Andrews, KY16 9SS St Andrews, UK Funder(s): Tertiary Education Trust Fund / Akwa Ibom State University (AKSU)

Abstract

ENZ MMs are media with vanishing real part of the relative permittivity. Useful for spatial light control, enhanced light-matter interaction and nonlinear optics. By mixing subwavelength metal and dielectric, fine-tuning of the ENZ operation wavelength of the resulting effective medium over wider ranges is possible. We show a Graphene/Ge multilayer ENZ MM in the IR region, and discuss its dynamic tunability via external control of the graphene's potential.

Project Description: Goal: 5-p Gr/Ge ENZ MM stacks (fig. 1a) and tune $\mathcal{E}'_{r||eff}$ with V_g . ENZ region is $|\mathcal{E}'_r| \leq 1$, results in fig 1b.

So,
$$\boldsymbol{\varepsilon}'_{r||eff} = \frac{t_g \varepsilon_g + t_d \varepsilon_d}{t_g + t_d}; \ \varepsilon_g = \varepsilon_d - j \frac{\sigma(\omega, \mu_c)}{\omega \varepsilon_0 d_g} \ [1]$$

Fig 2 (a) Flow diagram (i) and electro-optic set-up (ii), (b) Gr contrast & visibility of fringes, (c) A, and σ'_g , (d) Normalized Gr/Ge and Ge to back-gate Au at $10.6\mu m$ vs V_g

Key Results, Conclusions, Comments, Impact

- In fig 2, Contrast, A, σ'_g , & visibility of fringes at $10.6 \mu m$ changed by V_g .
- σ'_g transitions from the elliptic through the zero at $\approx 0.65 V_g$ to the hyperbolic regions, with $-\sigma'_g$, for subwavelength imaging, as V_g increases.
- Normalized Ge to Au has same trend as contrast, showing negligible loss
- Trend in A similar to that of $4p Au-SiO_2$ ENZ MM of ref [2]
- Check σ'_g enhancement in proposed structure; extract the $\epsilon'_{r||eff}$; and at what V_g the near-zero permittivity occurs.
- **Refs:** 1. Sayem *et al. 978-1-4799-4166-7/14/\$31.00,* 2014 IEEE 2. Gao, *et al.* App. Phys. Lett. 103, 051111 (2013)