

Direct measurement of electric dipole moment in thorium-228

Author(s): M. M. R. Chishti¹, <u>D. O'Donnell¹</u>, G. Battaglia², M. Bowry¹, D. A. Jaroszynski², B. S. Nara Singh¹, M. Scheck¹, P. Spagnoletti¹, J. F. Smith¹ Institution(s): ¹University of the West of Scotland, ²University of Strathclyde Funder(s): STFC, EPSRC, SUPA

Abstract

Measurements of the mean lifetime of the low-energy $J^{n} = 1^{-}$ and $J^{n} = 3^{-}$ states in ²²⁸Th have allowed for the electric dipole transition probabilities and the intrinsic dipole moment to be determined. The experimental results are compared with theoretical predictions which indicate that ²²⁸Th may be the nucleus with the largest octupole deformation. This study indicates that the nuclei ²²⁹Th and ²²⁹Pa may be good candidates for the search for a permanent atomic electric dipole moment and physics beyond the Standard Model.

Project Description

A vanishingly small but non-zero permanent electric dipole moment (EDM) in the electron is predicted by the Standard Model of particle physics. A nonzero EDM may offer a solution to the matter-antimatter asymmetry observed in the Universe but the magnitude of the predicted EDM is too small. Octupole-deformed, or pear-shaped, atomic nuclei have been identified as potential candidates with which to search for an electron EDM since the nonuniform distribution of protons and neutrons induces a dipole moment [1]. It is predicted that the sensitivity to an electron EDM has a quadratic dependence on the octupole deformation parameter, β_3 [2]. It is possible to extract the β_3 value by measuring the mean lifetimes of the low-energy oddparity states and comparing with theoretical predictions [3]. Lifetimes are measured following γ -ray spectroscopy using fast scintillating detectors in a lab at UWS.

Key Results, Conclusions and Impact

- $\tau(1^{-}) = 4(2)$ ps and $\tau(3^{-}) = 13(2)$ ps $\rightarrow B(E1; 1^{-} \rightarrow 0^{+}) = 8(6)$ x 10^{-4} W.u.
- These values result in an intrinsic dipole moment of $D_0 = 0.16(8)$ efm
- Consistent with a significant octupole deformation or pear shape
- Excellent agreement with theoretical calculations in the literature suggesting $\beta_3 = 0.11(2)$ which is the largest reported to date
- This result means that odd-mass atomic nuclei in the vicinity of ²²⁸Th may be the best candidates with which to search for a permanent EDM
- Currently, significant effort in this field is focused on octupole-deformed Rn and Ra nuclei but this study suggests that ²²⁹Th and ²²⁹Pa may be preferable

References

- [1] Auerbach *et al*. PRL **76**, 4316 (1996) [2] Spevak *et al*. PRC **56**, 1357 (1997)
- [3] Robledo and Butler, PRC **88**, 051302 (2013)

More information can be found in the Nature Physics paper at https://rdcu.be/b4fga