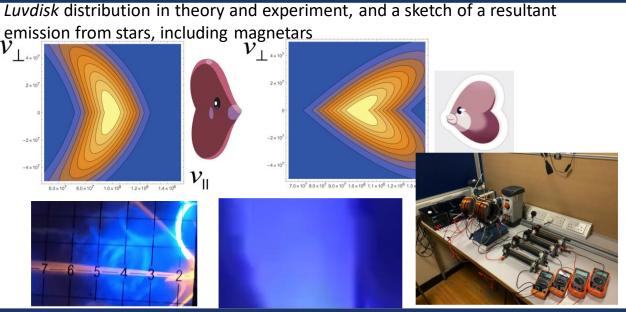


New cyclotron maser instability in electron beams due to magnetic field varying with time: theory and a simple experiment

Author(s): Irena Vorgul, Max Ayling, Conor Straub, DanielMacKay,Joseph Houghton, & Gavin LambInstitution(s): University od St AndrewsFunder(s): School of Physics and Astronomy, University of St Andrews


Abstract

Last summer, we were doing a summer project research with five students from St Andrews. The project was a pilot research into developing a new experimental and theoretical framework to examine kinetic beam instabilities arising from a *magnetic field gradually changing with time*. It is relevant to laboratory/tokamak plasma diagnostics and to a wide class of astrophysical plasmas.

Project Description

We combined theory and experiment, using a simple desktop set-up with a cathode tube and up to six pairs of magnetic coils allowing changing the magnetic field.

We found a new type of beam instability which can cause a cyclotron maser emission with distinct properties. Its frequency is conventionally close to the local cyclotron one, but the direction of radiation varies over a wide range. This change of direction can be responsible for deviations from periodicity in pulsars and magnetars.. We suggest the available data for gamma-rays emission from magnetars fits the properties of the above cyclotron emission. For a laboratory plasma, with cyclotron maser emission being the only noninvasive diagnostic tool, the found properties could refer change of the emission's direction to the time variations of local magnetic field.

Key Results, Conclusions, Comments

- a new type of instability found from theoretical derivations, which we called a *Luvdisk instability* (after a Pokemon ☺);
- evidences of this instability seen happening in the experiment involving an electron beam in a cathode tube trapped in gyrations by a set of six pairs of magnetic coils, the field of which we were changing in time;
- Looking for evidence of the effects in astrophysical observations, we found a relevance to magnetars' high-frequency (gamma-rays) emission.
 Refs: I. Vorgul, M. Ayling, C. R. Straub, D. M. MacKay, J. Houghton, & G. A. Lamb, *New kinetic cyclotron instability for electron beam in time-changing magnetic fields*, Journal of Plasma Physics, Volume 86, Issue 3, 2020, http://dx.doi.org/10.1017/S002237782000046X.

Two more papers in preparation.